Marcinkiewicz-type strong law of large numbers for double arrays of pairwise independent random variables
نویسندگان
چکیده
منابع مشابه
MARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES
In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....
متن کاملMarcinkiewicz-type Strong Law of Large Numbers for Double Arrays of Pairwise Independent Random Variables
Let { Xij } be a double sequence of pairwise independent random variables. If P {|Xmn| ≥ t}≤ P{|X| ≥ t} for all nonnegative real numbers t and E|X|p( log+ |X|)3 <∞, for 1 <p < 2, then we prove that ∑m i=1 ∑n j=1 ( Xij−EXij ) (mn)1/p → 0 a.s. as m∨n →∞. (0.1) Under the weak condition of E|X|p log+ |X| <∞, it converges to 0 in L1. And the results can be generalized to an r -dimensional array of r...
متن کاملmarcinkiewicz-type strong law of large numbers for double arrays of negatively dependent random variables
in the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. let be a double sequence of pairwise negatively dependent random variables. if for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). in addition, it also converges to 0 in . the res...
متن کاملthe strong law of large numbers for pairwise negatively dependent random variables
in this paper, strong laws of large numbers (slln) are obtained for the sums ƒ°=nii x1, undercertain conditions, where {x ,n . 1} n is a sequence of pairwise negatively dependent random variables.
متن کاملOn the Strong Law of Large Numbers for Sequences of Pairwise Negative Quadrant Dependent Random Variables
For a sequence of pairwise negative quadrant dependent random variables {Xn, n ≥ 1}, conditions are given under which normed and centered partial sums converge to 0 almost certainly. As special cases, new results are obtained for weighted sums { ∑n j=1 ajXj , n ≥ 1} where {an, n ≥ 1} is a sequence of positive constants and the {Xn, n ≥ 1} are also identically distributed. A result of Matu la [1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 1999
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s0161171299221710